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® Non-Gaussianity assumption violations:
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* Applicable to any functional causal discovery method ® Linearity assumptions violations: direction being X — Y. investigation is needed to determine directionality.
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CONTRIBUTIONS

®* CDDR Diagnostic: first diagnostic tool for causal discovery to evaluate assumption violations as a function of
sample size.
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® Applicable to any bivariate functional causal discovery method.

® CDDR diagnostic is especially effective when paired with a causal discovery method that provides more than just a
deterministic direction such as our proposed Test-based Approach.
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Simulation settings for varying levels of non-Gaussianity. Simulation settings for varying levels of linearity. Polynomial = 1
GMM(k=3) corresponds to non-Gaussian. GMM(k=2) corresponds corresponds to linear setting. Polynomial = 1.25 corresponds to
to slightly non-Gaussian. Gaussian corresponds to Gaussian setting. slightly nonlinear. Polynomial = 3 corresponds to nonlinear.




