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Background

• Causal discovery methods aim to infer a causal directionality structure from the data


• In bivariate case, for example, can use observational data to understand whether sleep problems 
cause depression or vise versa (Rosenstrom et al. (2012))
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Bivariate LiNGAM
• Shimizu et al. (2006) proposed a regression based causal discovery algorithm: Linear, Non-

Gaussian, Acyclic causal Models (LiNGAM)


• Assumptions:


1. Linearity


2. Non-gaussian error terms


3. Acyclicity


4. No unobserved confounders
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Bivariate LiNGAM
• In the bivariate case the goal is to decide between 2 possible linear causal models:


1.  


2.

X → Y

Y → X

6



Bivariate LiNGAM
• In the bivariate case the goal is to decide between 2 possible linear causal models:


1.  


2.

X → Y

Y → X

7

(Y = βX + ηY, X ⊥ ηY)

(X = ρY + ηX, Y ⊥ ηX)



Finite Sample Performance
• Shimizu et. al proved identifiability for LiNGAM but about LiNGAM’s finite sample 

performance


• How does LiNGAM perform under assumption violations?


• How does the sample size affect the discovery results?


• Currently this is not explored for LiNGAM and many other existing causal discovery 
algorithms
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Introducing the Test-based Method
• Introduce a framework to evaluate the finite sample performance of LiNGAM using 

hypothesis tests and a set of metrics related to statistical power


• We re-purpose the goodness-of-fit and independence test introduced by Sen and 
Sen (2014) into a causal discovery algorithm using the same modeling and 
distributional assumptions as LiNGAM


• The goodness-of-fit and independence test tests the following null hypothesis:





• Which we re-purpose into a bivariate causal discovery algorithm:


        

H0 : X ⊥ η, relationship between X and Y is linear

H1 = {H0
Y : X → Y, H1

Y : Y → X
H0

X : Y → X, H1
X : X → Y

⇒ H1 * = {H0
Y : X ⊥ ϵ, H1

Y : X, ϵ dependent 

H0
X : Y ⊥ δ, H1

X : Y, δ dependent 
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Comparing Test-based method with LiNGAM
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• Same assumptions

• Estimate causal direction by 

running two regression models

• Tests independence as well 
as goodness of fit 


• Sen & Sen test outputs a 
p-value


• Compares p-values to a 
significance level


• More sensitivity to 
assumption violations 

• Impact of assumption 
violations are well-
understood

• Tests independence

• Only outputs “test statistic” 

(e.g mutual information)

• Compares test statistics of 

the two directions

• Less sensitive to 

assumption violations

Test-based Method LiNGAM



Statistical Guarantees
P-values


• We estimate the p-values corresponding to the set of hypothesis tests
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H1 * = {H0
Y : X ⊥ ϵ, H1

Y : X, ϵ dependent 
H0

X : Y ⊥ δ, H1
X : Y, δ dependent 



Statistical Guarantees
Power-related Metrics


• We introduce a set of metrics that are related to power, a relationship between sample 
size and our chances of determining the true causal direction


• Allow us to assess how sample size and assumption violations affect the causal 
direction inferred in addition to added statistical guarantees that p-values give
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Simulation Setup

• Explore 3 levels of increasing linearity and Gaussianity


• Evaluate how assumption violations affect the true direction detection rate


• Compare LiNGAM with the Hilbert Schmidt Independence Criteria as the independence measure with 
the Test-based Approach
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Simulation Setup

Key Takeaways


• Our LiNGAM simulations will show us the chance of choosing the (in)correct direction as a function 
of sample size


• Our Test-based approach simulations will show us the chance of choosing the (in)correct direction 
as a function of sample size as well as indicate if there are any assumption violations
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Linearity Simulation Results
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Polynomial = 1 Polynomial = 1.5 Polynomial = 5

Linearity Simulations



Gaussianity Simulation Results
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GMM with 3 mixtures Gaussian

Gaussianity Simulations

GMM with 2 mixtures
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Real Data Results
• The Food Consumption Data measures the average annual rate of change of 

population and the average annual rate of change of the total dietary consumption for 
total population


• Known causal direction is that population change causes change in total dietary 
consumption
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Conclusions
Findings


• The Test-based approach assesses when there are assumption violations as well as estimate the 
causal direction at the same time


• Able to assess the uncertainty of the causal direction estimate through power-like metrics and p-
value
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Conclusions

Next Steps


• Want to assess the finite sample performance for more complicated causal discovery models and 
extend our results to the multivariate case
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Thank you! Questions?
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Appendix
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Simulation Setup
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Real Data: Bone Mineral Density Data Results

• Bone Mineral Density Data contains 1003 relative spinal bone mineral density measurements on 
261 North American adolescents


• Known causal direction is that age causes the spinal bone mineral density measurements for 
adolescents
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Truncated Bone Mineral Density Data
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Lingam Results for both

 transformed and 

untransformed data

Test-based Results for 
untransformed data

Scatterplot of truncated 
Bone Mineral Density data

Test-based Results for 
transformed data

• Linearity assumption is violated so using additive noise models to instead infer the causal direction


• Instead of checking for linearity, our method will be testing for the goodness-of-fit of the estimated 
non-linear models


• Instead of checking non-gaussianity, our method checks for non-identifiability


• Fit splines in both directions for Truncated BMD Data and able to detect the correct direction



Sleep and Depression Data
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Lingam Results Sen & Sen Results



Linearity Simulation Results (n = 400)
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Polynomial = 1 Polynomial = 1.5 Polynomial = 5

Linearity Simulations



Gaussianity Simulation Results (n = 400)
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GMM with 3 mixtures Gaussian

Gaussianity Simulations

GMM with 2 mixtures



Causal Discovery
• Causal discovery methods aim to infer a causal directionality structure from the data


• Generally two directions:


1. Functional-based (e.g LiNGAM)


2. Constraint-based (PC Algorithm)


• Interested in bivariate case, so we cannot use conditional independence based 
algorithms like the PC algorithm
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Bivariate LiNGAM

• Shimizu et al. (2006) proposed the LiNGAM model


• Assumptions:


1. Linearity


2. Non-gaussian error terms


3. Acyclicity


4. No unobserved confounders
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Bivariate LiNGAM
• In the bivariate case the goal is to decide between 2 possible linear causal models:


1.  


2. 


• But LiNGAM only outputs the causal direction without any statistical guarantees, have 
no idea if the output is right or wrong due to assumption violations

X → Y

Y → X
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(Y = βX + ηY, X ⊥ ηY)

(X = ρY + ηX, Y ⊥ ηX)



Sen and Sen Test
• Sen and Sen (2014) proposes a goodness of fit and independence test based on the Hilbert-

Schmidt independence criterion (HSIC)


• Similarly to LiNGAM, this method makes the following assumptions


1. Linearity


2. Non-gaussian error terms


3. Acyclicity


4. No unobserved confounders 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Sen and Sen Causal Discovery
• The Sen and Sen test tests the following null hypothesis:





• In the bivariate case, interested in testing the following set of hypothesis:





H0 : X ⊥ η, relationship between X and Y is linear

H1 = {H0
Y : X → Y, H1

Y : Y → X
H0

X : Y → X, H1
X : X → Y
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Sen and Sen Causal Discovery
• With assumptions have that:


• So can translate  to 
H1

H1 * = {H0
Y : X ⊥ ϵ, H1

Y : X, ϵ dependent 

H0
X : Y ⊥ δ, H1

X : Y, δ dependent 
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Y = X + ϵ⇒

⇒ X = Y + δ

X → Y

Y → X



Simulation Setup
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Settings of Linearity Simulation of X Distribution Settings of Gaussianity Errors



Discussion

• Still have room to explore how algorithms behave when there is a weak signal between X and 
Y


• If there is both a weak signal as well as assumption violations, we hypothesize that there 
might not be enough “delay in detection of assumption violation” for the Sen and Sen 
algorithm to determine the correct causal direction


• Can see an example with the truncated version of the Bone Mineral Density data
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What is Power Analysis

• 


• Statistical power is one piece of a puzzle of 3 other related parts:


1. Effect size (es): size of magnitude of a result present in the population

Power = P(reject H0 |H1 true)
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Causal Discovery and Power
• In causal discovery, power translates to the probability of correctly identifying the causal direction





• Example: if lack of sleep does in fact cause depression, low power would mean we would not be able 
to determine the causal direction between sleep and depression


• Will use power analysis to understand if sample size would affect the results of causal discovery and 
how this differs across methods


• Specifically will analyze power under linearity assumption violations for both LiNGAM and Sen and Sen

P(reject (X → Y) |Y → X) and P(reject (Y → X) |X → Y)
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